

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

This tutorial provides a step-by-step introduction to automated generation of tests that provide
combinatorial coverage. Procedures introduced in this tutorial will produce a set of complete tests, i.e.,
input values with the expected output for each set of inputs. A “cookbook” style is used in the tutorial
to keep the description concise, so it may not be intuitively obvious why certain steps are used. For the
theory behind the processes introduced in this document, please see papers on the ACTS web site
(http://csrc.nist.gov/acts). For questions on this tutorial, contact Rick Kuhn, kuhn@nist.gov.

To apply the methods described here you will need:

� The ACTS covering array generator and NuSMV model checker. ACTS is a free, open source

tool developed by NIST and the University of Texas Arlington. ACTS is written in Java and
can run in any OS with Java support. NuSMV, a variant of the original SMV model checker, is
also freely available and was developed by Carnegie Mellon University, Istituto per la Ricerca
Scientifica e Tecnolgica (IRST), U. of Genova, and U. of Trento. NuSMV can be installed on
either UNIX/Linux or Windows systems running Cygwin. Links and instructions for
downloading these tools are included in the appendix.

� A formal or semi-formal specification of the system or subsystem under test (SUT). This can
be in the form of a formal logic specification, but state transition tables, decision tables, pseudo-
code, or structured natural language can also be used, as long as you can write SMV code that
matches the specification. The SMV code provides a precise, machine-processable set of rules
that can be used to generate tests.

� An enumeration of values for each of the input parameters to be used in tests. The number of
values per parameter should be limited to no more than 8 to 10. In most cases this will require
establishing equivalence classes of parameter values. For example, values for an account
balance may be 0, 1, 500, and 999999999 (or whatever is the maximum decimal value).

1 Overview

To apply combinatorial testing, two tasks must be accomplished:

1. Find a set of tests that will cover all t-way combinations of parameter values. ACTS will be used

for this step. The covering array specifies test data, where each row of the array can be regarded as
a set of parameter values for an individual test. Collectively, the rows of the covering array cover
all t-way combinations of parameter values.

2. Determine what output should be produced by the SUT for each set of input parameter values. The

test data output from ACTS will be incorporated into SMV specifications that can be processed by
the NuSMV model checker for this step. In many cases, the conversion to SMV will be
straightforward. The example in Section 2 illustrates a simple conversion of rules in the form “if
condition then action” into the syntax used by the model checker. The model checker will
instantiate the specification with parameter values from the covering array once for each test in the

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

2

covering array. The resulting specification is evaluated against a claim that negates each possible
result Rj using a model checker, so that the model checker evaluates claims in the following form:
Ci => ~Rj, where Ci is a set of parameter values in one row of the covering array in the form p1 =
vi1 & p2 = vi2 & ... & pn = vin, and Rj is one of the possible results. The output of this step is a set of
counterexamples that show how the SUT can reach the claimed result Rj from a given set of inputs.

The example in the following sections illustrates how these counterexamples are converted into
tests. (Other approaches – covered in other tutorials – to determining the correct output for each
test can also be used. For example, in some cases we can run a model checker in simulation mode,
producing expected results directly rather than through a counterexample. In this tutorial we adopt
a methodology that is consistent with mutation-based test generation procedures.)

The completed tests can be used to validate correct operation of the system for interaction

strengths up to some pre-determined level t. Depending on the system type and level of effort, we may
use want pairwise (t=2) or higher strength, up to t=6 way interactions. We do not claim this guarantees
correctness of the system, as there may be failures triggered only by interaction strengths greater than t.
In addition, some of the parameters are likely to have a large number of possible values, requiring that
they be abstracted into equivalence classes. If the abstraction does not faithfully represent the range of
values for a parameter, some flaws may not be detected by equivalence classes used.

2 Example

Here we present a small example of a very simple access control system. The rules of the
system are a simplified multi-level security system, given below, followed by a step-by-step
construction of tests using a fully automated process.

Each subject (user) has a clearance level u_l, and each file has a classification level, f_l.
Levels are given as 0,1, or 2, which could represent levels such as Confidential, Secret, and Top Secret.
A user u can read a file f if u_l ≥ f_l (the “no read up” rule), or write to a file if f_l ≥ u_l (the “no
write down” rule).

Thus a pseudo-code representation of the access control rules is:

if u_l >= f_l & act = rd then GRANT;
 else if f_l >= u_l & act = wr then GRANT;
 else DENY;

Tests produced will check that these rules are correctly implemented in a system.

3 SMV Model

This system is easily modeled in SMV as a simple two-state finite state machine. The START
state merely initializes the system (line 8, Figure 1), with the rule above used to evaluate access as
either GRANT or DENY (lines 9-13). For example, line 9 represents the first line of the pseudo-code
above: in the current state (always START for this simple model), if u_l ≥ f_l then the next state is
GRANT. Each line of the case statement is examined sequentially, as in a conventional programming

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

3

language. Line 12 implements the “else DENY ” rule, since the predicate “1” is always true. SPEC
clauses given at the end of the model are simple “reflections” that duplicate the access control rules as
temporal logic statements. They are thus trivially provable, but we are interested in using them to
generate tests rather than to prove properties of the system.

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd,wr}; -- action

--output parameter

6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then rea d is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = G RANT));

-- if user level is at or below file level, then wr ite is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = G RANT));

-- if neither condition above is true, then DENY an y action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

Figure 1. SMV model of access control rules

 Separate documentation on SMV should be consulted to fully understand the syntax used, but
specifications of the form “AG ((predicate 1) -> AX (predicate 2))” indicate essentially that for
all paths (the “A” in “AG”) for all states globally (the “G”), if predicate 1 holds then (“-> ”) for all
paths, in the next state (the “X” in “AX”) predicate 2 will hold. In the next section we will see how
this specification can be used to produce complete tests, with test data input and the expected output for
each set of input data.

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

4

4 What Does the Model Checker Do?

 Model checkers they can be used to perform a variety of valuable functions, because they make
it possible to evaluate whether certain properties are true of the system model. Conceptually, the model
checker can be viewed as exploring all states of a system model to determine if a property claimed in a
SPEC statement is true. If the statement can be proved true for the given model, the model checker
reports this fact. What makes a model checker particularly valuable for many applications, though, is
that if the statement is false, the model checker not only reports this, but also provides a
“counterexample” showing how the claim in the SPEC statement can be shown false. The
counterexample will include input data values and a trace of system states that lead to a result contrary
to the SPEC claim (Figure 2).

Figure 2. Inside a Model Checker

For advanced applications in test generation, this counterexample generation capability is very

useful. In this tutorial, however, we will simply use the model checker to determine whether a
particular input data set makes a SPEC claim true or false. That is, we will enter claims that particular
results can be reached for a given set of input data values, and the model checker will tell us if the
claim is true or false. This gives us the ability to match every set of input test data with the result that
the system should produce for that input data.

 The model checker thus automates the work that normally must be done by a human tester –
determining what the correct output should be for each set of input data. In some cases, we may have a
“reference implementation”, that is, an implementation of the functions that we are testing that is
assumed to be correct. This happens, for example, in conformance testing for protocols, where many
vendors implement their own software for the protocol and submit it to a test lab for comparison with
an existing implementation of the protocol. In this case the reference implementation could be used for
determining the expected output, instead of the model checker. Of course before this can happen the
reference implementation itself must be thoroughly tested before it can be used as the gold standard for
testing other products, so the method we describe here may be needed to produce tests for the original
reference implementation.

The system can never
get in this state!

Yes it can, and
here’s how …

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

5

5 NuSMV Output

Checking the properties in the SPEC statements shows that they match the access control rules as
implemented in the FSM, as expected. In other words, the claims we made about the state machine in
the SPEC clauses can be proven. This step is used to check that the SPEC claims are valid for the
model defined previously. If NuSMV is unable to prove one of the SPECs, then either the spec or the
model is incorrect. This problem must be resolved before continuing with the test generation process.
Once the model is correct and SPEC claims have been shown valid for the model, counterexamples can
be produced that will be turned into test cases.

*** This is NuSMV 2.4.3 (compiled on Tue May 22 14: 08:54 UTC 2007)
*** For more information on NuSMV see <http://nusmv .irst.itc.it>
*** or email to <nusmv-users@irst.itc.it>.
*** Please report bugs to <nusmv@irst.itc.it>.
*** This version of NuSMV is linked to the MiniSat SAT solver.
*** See http://www.cs.chalmers.se/Cs/Research/Forma lMethods/MiniSat
*** Copyright (c) 2003-2005, Niklas Een, Niklas Sor ensson

-- specification AG ((u_l >= f_l & act = rd) -> AX access = GRANT) is
true
-- specification AG ((f_l >= u_l & act = wr) -> AX access = GRANT) is
true
-- specification AG (!((u_l >= f_l & act = rd) | (f _l >= u_l & act =
wr)) -> AX access = DENY) is true

Figure 3. NuSMV output

6 Covering Array

We will compute covering arrays that give all t-way combinations, with degree of interaction
coverage = 2 for this example. This section describes the use of ACTS as a standalone command line
tool, using a text file input. A GUI based version of ACTS can also be used. Procedures for doing so
are included in the Appendix. This example is small enough that the command line version is adequate
and easy to use. The first step is to define the parameters and their values in a system definition file
that will be used as input to ACTS. Call this file “in.txt”, with the following format:

[System]
[Parameter]
u_l: 0,1,2
f_l: 0,1,2
act: rd,wr
[Relation]
[Constraint]
[Misc]

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

6

For this application, the [Parameter] section of the file is all that is needed. Other tags refer to
advanced functions that will be explained in other documents. After the system definition file is
saved, run ACTS as shown below:

 java -Ddoi=2 -jar acts_1.0b6.jar ACTSin.txt

The “-Ddoi=2 ” argument sets the degree of interaction for the covering array that we want ACTS to
compute. In this case we are using simple 2-way, or pairwise, interactions. (For a system with more
parameters we would use a higher strength interaction, but with only three parameters, 3-way
interaction would be equivalent to exhaustive testing.) ACTS produces the output shown in Figure 4.

 Figure 4. ACTS output

Each test configuration defines a set of values for the input parameters u_l, f_l, and act. The

complete test set ensures that all 2-way combinations of parameter values have been covered. If we
had a larger number of parameters, we could produce test configurations that cover all 3-way, 4-way,
etc. combinations. ACTS may output “don’t care” for some parameter values. This means that any

Configuration #5:
1 = u_l=1
2 = f_l=1
3 = act=rd

Configuration #6:
1 = u_l=1
2 = f_l=2
3 = act=wr

Configuration #7:
1 = u_l=2
2 = f_l=0
3 = act=rd

Configuration #8:
1 = u_l=2
2 = f_l=1
3 = act=wr

Configuration #9:
1 = u_l=2
2 = f_l=2
3 = (don't care)

Number of parameters: 3
Maximum number of values per
parameter: 3
Number of configurations: 9

Configuration #1:
1 = u_l=0
2 = f_l=0
3 = act=rd

Configuration #2:
1 = u_l=0
2 = f_l=1
3 = act=wr

Configuration #3:
1 = u_l=0
2 = f_l=2
3 = act=rd

Configuration #4:

1 = u_l=1
2 = f_l=0
3 = act=wr

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

7

legitimate value for that parameter can be used and the full set of configurations will still cover all t-
way combinations. Since “don’t care” is not normally an acceptable input for programs being tested, a
random value for that parameter is substituted before using the covering array to produce tests.

7 SPEC Claims with Combinatorial Test Values Inserted

The next step is to assign values from the covering array to parameters used in the model. For
each test, we claim that the expected result will not occur. The model checker determines
combinations that would disprove these claims, outputting these as counterexamples. Each
counterexample can then be converted to a test with known expected result. (Note that the trivially
provable positive claims have been commented out. Here we are concerned with producing
counterexamples.)

Recall the structure introduced in Section 1: Ci => ~Rj. Here Ci is the set of parameter values

from the covering array. For example, for configuration #1 in Section 6:

u_l = 0 & f_l = 0 & act = rd

As can be seen below, for each of the 9 configurations in the covering array (Section 6), we

create a SPEC claim of the form:

SPEC AG((<covering array values>) -> AX !(access = <result>));

This process is repeated for each possible result, in this case either “GRANT” or “DENY”, so we
have 9 claims for each of the two results. The model checker is able to determine, using the model
defined in Section 3, which result is the correct one for each set of input values, producing a total of 9
tests.

Excerpt:
...

-- reflection of the assign for access
--SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));
--SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));
--SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_ l & act = wr))
 -> AX (access = DENY));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(acce ss = GRANT));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(acce ss = GRANT));

SPEC AG((u_l = 0 & f_l = 0 & act = rd) -> AX !(acce ss = DENY));

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

8

SPEC AG((u_l = 0 & f_l = 1 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 0 & f_l = 2 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 0 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 1 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 1 & f_l = 2 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 0 & act = rd) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 1 & act = wr) -> AX !(acce ss = DENY));
SPEC AG((u_l = 2 & f_l = 2 & act = rd) -> AX !(acce ss = DENY));

8 Counterexamples

NuSMV produces counterexamples where the input values would disprove the claims specified
in the previous section. Each of these counterexamples is thus a set of test data that would have the
expected result of GRANT or DENY.

For each SPEC claim, if this set of values cannot in fact lead to the particular result Rj, the
model checker indicates that this is true. For example, for the configuration below, the claim that
access will not be granted is true, because the user’s clearance level (u_l = 0) is below the file’s level
(f_l = 2):

-- specification AG (((u_l = 0 & f_l = 2) & act = r d) -> AX !(access =
GRANT)) is true

If the claim is false, the model checker indicates this and provides a trace of parameter input

values and states that will prove it is false. In effect this is a complete test case, i.e., a set of parameter
values and expected result. It is then simple to map these values into complete test cases in the syntax
needed for the system under test.

Excerpt from NuSMV output:

-- specification AG (((u_l = 0 & f_l = 0) & act = r d) -> AX !(access =
GRANT)) is false
-- as demonstrated by the following execution seque nce
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-
-> State: 1.2 <-
 access = GRANT

The model checker finds that 6 of the input parameter configurations produce a result of GRANT and 3
produce a DENY result, so at the completion of this step we have successfully matched up each input
parameter configuration with the result that should be produced by the SUT.

AUTOMATED TESTING WITH ACTS AND A MODEL CHECKER

9

9 Tests

We now strip out the parameter names and values, giving tests that can be applied to the system
under test. This can be accomplished using a variety of methods; a simple script used in this example
is given in the appendix. The tests produced are shown below:

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
 u_l = 0 & f_l = 2 & act = rd -> access = DENY
 u_l = 1 & f_l = 0 & act = wr -> access = DENY
 u_l = 2 & f_l = 1 & act = wr -> access = DENY

These test definitions can now be post-processed using simple scripts written in PERL, Python, or
similar tool to produce a test harness that will execute the SUT with each input and check the results.
While tests for this trivial example could easily have been constructed manually, the procedures
introduced in this tutorial can, and have, been used to produce tens of thousands of complete test cases
in a few minutes, once the SMV model has been defined for the SUT.

APPENDIX

ACTS download and install

Email me if you don’t already have it (we like to keep track of the number of users; helps
maintain management support!): kuhn@nist.gov.

NuSMV download and install

http://nusmv.irst.itc.it/

Script to generate tests from SMV output used in Section 9 for the example

Input: output file from NuSMV
Output: tests.txt file of test definitions described in Section 9

produce tests from smv output
grep specification smvoutput | grep "is false" \
|sed 's/(//g' | sed 's/)//g' >tests.txt
ex tests.txt <<END
:1,$ s/--.*AG//
:1,$ s/AX !//
:1,$ s/is false//
:w
END

